

Optimize architecture by generating N2 Design Structure Matrices with DSM4Capella

Webinar Capella

OJEDA Mirna - mirna.ojeda@samares-engineering.com

Samares-Engineering Overview

SAMARES Mission

Deliver Systems Engineering (SE/MBSE) Expertise and services

Scoping & Assessment

SE Tool assessment

SE Improvement plan definition

Learning Center

SE, MBSE PLE Trainings, coaching, support

Delivery & Follow-up

SE tools

Product Line Engineering

Digital continuity

SE Cost saving

identification

Samares-Engineering Web Site

tm:

Our vision Requirements and MBSE (1/2)

3. Ensure consistency and end to end traceability through models

Our vision – digital continuity (2/2)

Problematic of interfaces coupling

Multiplicity of interfaces and involved physics

As stated in standards such as ISO26262, it is recommended to

« Avoid unnecessary complexity of interfaces » ISO26262-4 Product Development at System Level

related paper presented at ERTS2024 conference [0]

Context overview

Functions

Logical components

Interfaces

How to manage minimization of interfaces between components for large systems (high number of functions/components)?

Architecture Analysis & Design Integrated Approach

ARCADIA method defines systems engineering concepts from needs analysis to architectural solution definition

Logical architecture

Is an intermediate step to define a system architecture from stakeholder needs analysis.

Describes functions closer to their eventual physical implementation, guided by functional dependencies.

Design Structure Matrix (DSM)/N2

Is a graphical representation used in Systems Engineering to analyse and visualize the relationships and dependencies between different components within a system [1].

Input							
Output	1	F1	F2	F3	F4	F5	F6
	F1	F1	1	0	0	0	0
	F2	0	F2	1	0	1	0
	F3	1	1	F3	0	0	0
	F4	0	0	0	F4	1	0
	F5	1	0	0	1	F5	0
	F6	1	0	0	0	0	F6

1: there is at least one interface between the functions (column, row)

0: no interaction

Design Structure Matrix mechanism for optimization as defined in Systems Engineering Handbook [1]

Input								
Output	1	F1	F2	F3	F4	F5	F6	
1	F1	F1	1	0	0	0	0	
	F2	0	F2	1	0	1	0	
	F3	1	1	F3	0	0	0	
	F4	0	0	0	F4	1	0	
	F5	1	0	0	1	F5	0	
	F6	1	0	0	0	0	F6	

	Input							
Output	\uparrow	F1	F2	F3	F4	F5	F6	
	F1	F1	1	0	0	0	0	
	F2	0	F2	1	0	1	0	
	F3	1	1	F3	0	0	0	
	F4	0	0	0	F4	1	0	
	F5	1	0	0	1	F5	0	
	F6	1	0	0	0	0	F6	

	Input								
Output		F2	F3	F5	F4	F1	F6		
	F2	F2	1	1	0	0	0		
	F3	1	F3	0	0	1	0		
	F5	0	0	F5 ₁	1	1	0		
	F4	0	0	1	F 4	0	0		
	F1	1	0	0	0	F1	0		
	F6	0	0	0	0	1	F6		
	F1	1	0	0	0	F1	3		

1: there is at least one interface between the functions (column, row)

0: no interaction

Total 8 interactions between modules

The metrics of interaction complexity is known as coupling value

Approach Proposed

The coupling value

The coupling value serves as an assessment of the complexity of coupling between logical components, derived from a formula based on software coupling metrics.

Coupling value formula

$$Coupling(C_{M_k}) = 1 - \frac{1}{d_i + 2 \cdot c_i + d_o + 2 \cdot c_o + \omega + r}$$

Equation 1 - Coupling Value of a Logical Component

$$CouplingValue(C_v) = \sum_{k=1}^{n} [C_{M_k}]$$

Equation 2 - Coupling Value of the Complete Logical Architecture

 M_k is the logical component under consideration

 d_i is the number of input data parameter

 c_i is the number of input control parameters

 d_o is the number of output data parameters

 c_0 is the number of output control parameters

 ω is the number of modules called (fan-out)

r is the number of calling the module under consideration (fan-in)

Source: [4]

Related work

• Integration of N2 matrices within MBSE environments [2]

Focus on extraction of N2 matrice from MBSE model without optimization

Integration of DSM generation with genetic algorithm for detailed physical architectures [3]

Focus on optimization and fast algorithm on complex physical architecture

Coupling Optimization Detailed approach and application to case studies

Approach Proposed

Use of DSM principle and apply the permutation principle to the Genetic algorithm

Genetic algorithms, aim to explore the solution space of a given problem to meet predefined criteria

Genetic algorithm processes

Implementation

Implementation

Algorithm structure and adaptation to Capella

Analysis + Optimization

Implementation – 1st case study

AIDA use case

The AIDA system is a Remotely Piloted Aircraft System (RPAS) that it is composed of a quadcopter drone, which performs an autonomous inspection around the aircraft before take-off [5].

Source: [5]

Implementation

SAMARES ENGINEERING Accelerate Systems Design

AIDA use case - CAPELLA

Logical architecture before and after algorithm execution

Logical architecture after algorithm execution

Demonstration

Implementation –2nd case study

Health Agriculture Unmanned Aircraft Vehicle (HAUAV) use case

Demonstration - 2nd case study

Conclusion

- Proposed value on Functional and Logical Architectures integrated within MBSE tools
- Enables Decisions making regarding distribution of functions over logical architecture
- Publication **DSM4Capella** (**GitHub labs4capella/DSM4Capella**) in Capella Community within Labs4Capella [6].

Future works

- Provide implementation of DSM generation within other MBSE Tools
- Extend the concept to introduce consideration of timing constraints and extend the functions and component exchanges with a time delay property and ensure as a constraint that Time budget allocated to the overall functional chain are fulfilled
- Optimize performances of the current algorithm
- Explore other algorithms than Genetic Algorithm and use optimization techniques proposed in related works to handle large matrices.
- Explore the possibility to generate alternatives of architectures in a same model and exhibit the associated properties (timing, performance, costs, ...) of each. Then extend this with multi-dimensional optimization techniques.
- Enhance process with Layout facility

References

- [0] Sebastien Dube, Mirna Ojeda, Jean-Marie Gauthier. Coupling Optimization using Design Structure Matrices and Genetic Algorithm. ERTS2024, SEE; 3AF, Jun 2024, Toulouse, France. (hal-04632975)
- [1] INCOSE, Systems Engineering Handbook V5, 2023.
- [2]. S. K. Salas Cordero, C. Fortin et R. Vingerhoeds, «Concurrent Conceptual Design Sequencing for MBSE of Complex Systems through Design Structure Matrices,» chez International Design Conference, 2020
- [3] F. Borjesson et U. Sellgren, «Fast Hybrid Genetic Clustering Algorithm for Design Structure Matrix,» chez ASME 2013 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, 2013.
- [4] Y. Khetan, J.-M. Gauthier et S. Dubé, «Part 5 Coupling optimization of logical architecture using genetic algorithm,» June 2020. [En ligne]. Available: https://www.samares-engineering.com/en/2020/07/. [Accès le 28 05 2024].
- [5] IRT St Exupery, «AIDA architecture,» [En ligne]. Available: https://sahara.irt-saintexupery.com/AIDA/AIDAArchitecture. [Accès le 28 05 2024]
- [6] «Labs4Capella,» [En ligne]. Available: https://github.com/labs4capella/DSM4Capella/tree/master.[Accès le 23 05 2024].

