Capella Days 2024

Where the Capella Community Meets

November 19-21 Online & Free

MathWorks

Enabling MBSE with Simulation to perform System Analysis for SOLARIS

Serena Brizio

System Engineer & MBSE specialist serena.brizio@thalesaleniaspace.com

Marco Bimbi

EMEA MBSE Application Engineer marcob@mathworks.com

Lorenzo Guarino

Mission Analysis & Operations Engineer lorenzo.guarino-somministrato@thalesaleniaspace.com

Stephan van Beek

EMEA MBSE Application Engineer svanbeek@mathworks.com

Agenda

- What is SOLARIS?
- Why use MBSE in SOLARIS?
- What are the main challenges/needs?
- Solution
 - Process/methodology
 - Bridge between Capella and System Composer
 - Analysis Workflow
- Outcomes & Concluding Remarks
- Q&A

MathWorks ThalesAlenia a Tuxes / Leonardo company Space

What is SOLARIS about?

5

DD

DD

3

 Space-Based Solar Power involves harvesting sunlight from Earth orbit then beaming it down to the surface where it is needed.

- 2. Solar energy capture and regulation
- 3. Power beaming
- 4. Beam capture and conversion
- 5. Transmission and distribution

00

DD

ממ

Why use MBSE in Solaris?

Architecture design

- Design the architecture with a MBSE method and deliver to ESA a digital model
- 2. Follow the development of several trade-off with several systems strongly interconnected

Architecture optimization

- 1. How can we harmonize the different technologies to obtain the best compromise?
- 2. How can we analyze different kind of data interconnected among each others?

Static point of view (Capella)

Dynamic point of view (System Composer, Simulink)

Solution - Process/methodology

Full Article: Creating a Bridge Between Capella and System Composer

* can be customized for other objects and mappings like requirements, profiles, etc.

MathWorks[®]

Space

ThalesAle

Thales / Leonardo company

Solution - Bridge between Capella and System Composer Digital continuity

MathWorks ThalesAlenia a Thules / Leaverte compart Space

a Thales / Leonardo company Space

ThalesAle

Solution - Analysis Workflow

Low Fidelity Analysis

- Objective: Find optimal combination of the Photovoltaic (PV) area, antenna area, and GPS area
- Design Choices
 - (3) Cell technology
 - (3) Ground Station Location
 - (2) Transmission Frequency

- Ground - Transn Fixed Pa - CellTer	Jarameters JarowerStationLoc nissionFrequency arameters parame chnology	ation ters:						
#	Gound Power Station Lat (°)	Transmission Frequency (GHz)	Cell Efficiency (%	Ground Power Station Area (Km^2)	Antenna Area (Km^2)	Solar Panel Area (Km^2)	T E (tal ficien)
1	40.2085	2.45	29	53.2922	0.87479	5.926	1	.4
2	40.2085	5.8	29	25.494	0.39651	6.2034	1	.84
3	51.1657	2.45	29	72.2886	0.89906	5.9367	1	.38
4	51.1657	5.8	29	29.7018	0.45058	6.1999	1	85
5	60.1282	2.45	29	103.9448	0.92116	5.9467	1	.36
6	60.1282	5.8	29	41.6778	0.4762	6.2001	1	85
6	60.1282	5.8	29	41.6778	0.4762	6.2001	1	.8

3 x 3 x 2 = 18 unique variant combinations

Solution - Analysis Workflow

High Fidelity Analysis

- Objective:
 - High-fidelity power simulations in various mission scenarios
 - Preliminary mass and cost estimation

Define Multisimulation Pa	rameters & Set	tings			
Tunable Parameter List		-	Analysis Type	High Fidelity	
DC_RF_Techn	ology				
EclipticInclinati	on		Generate Sim Report	No	
SPSAlignment					
SimulationDay					
Define Fixed Parameter V	alues				
Define Fixed Parameter V	alues	Parameter Selec	tion	Parameter Value	
Define Fixed Parameter V Parameter Name DC_RF_Technology	alues	Parameter Selec SolidStatePower	tion Aplifier •	Parameter Value (60W 0.001Kg]	
Define Fixed Parameter V Parameter Name DC_RF_Technology Eclipticinaliton	alues	Parameter Selecc SolidStatePower, Nominal	tion Aplifier •	Parameter Value (60W 0.001Kg) Nominal	
Define Fixed Parameter V Parameter Name DC_RF_Technology Eclipticinclination SPSAlignment	alues	Parameter Select SolidStatePower/ Nominal WeilAligned	tion Aplifier + +	Parameter Value (60W 0.001Kg] WeilAligned	
Define Fixed Parameter V Parameter Name DC_RF_Technology Eclipticnclination SPSAlignment SimulationDay	alues	Parameter Select SolidStatePowerr Nominal WeilAligned NominaiDay	tion Aplifier	Parameter Value (60W 0.001Kg) Mominal WellAligned NominalDay	
Define Fixed Parameter V Parameter Name DC_RF_Technology EclipticInclination SPSAlignment SimulationDay	alues	Parameter Selec SolidStatePower, Nominal WeltAligned NominalDay	tion Aplifier • • •	Parameter Value (60W 0 001Kg) Nominal WeilAligned NominalDay	
Define Fixed Parameter V Parameter Name DC_RF_Technology EclipticInclination SPSAlignment SimulationDay	alues	Parameter Selec SolidStatePower, Nominal WellAlgned NominalDay	tion Aplifier • • •	Parameter Value (60W 0.001Kg) Nominal WellAligned NominalDay	
Define Fixed Parameter V Parameter Name DC_RF_Technology Eclipticination SPSAlignment SimulationDay	alues	Parameter Selecc SolidStatePower/ Nominal WeltAligned NominalDay	tion Aplifier - - - -	Parameter Value (60W 0 001Kg) Nominal WellAligned NominalDay	
Define Fixed Parameter V Parameter Name DC_RF_Technology Ecliptionclination SFSAlignment SimulationDay	alues	Parameter Select SolidStatePower/ Nominal WeilAligned NominalDay	tion Aplifier	Parameter Value (60W 0.001Kg) Nominal WellAligned NominalDay	

- Design Choices
 - (3) DF-RF Technology
 - (2) Simulation Day
 - (2) Ecliptic inclination
 - (2) SPS Alignment

Ecliptic Inclination [-]	Average Transmission Power (MW)	Total Mass (T) & Total Launch(-)	Misson Cost (B\$) & LCOE (\$/MWh)	EROEI (-) & Energy Paybacktime (days)
Nominal	@PVA=2064 @PMainBus=1979 @On-board Antenna=1577 @GPS=1051 @Grid=993	tot_mass=6591tot_launch=106	miss_cost=14LCOE=191	EROEI=42EPBT=219
Nominal	@PVA=1883 @PMainBus=1805 @On-board Antenna=1439 @GPS=959 @Grid=993	 tot_mass=6591 tot_launch=106 	miss_cost=14 LCOE=191	• EROEI=42 • EPBT=219

3 x 2 x 2 x 2 = 24 unique variant combinations

Solution - Analysis Workflow Architecture Metadata

Space		30	SF AI	alysis	гап	lewo	n
Vission Defini	ion Analy	sis Set Up	Analysis Result	Analysis Plots			
Running Sin	ulation: 6	/6					
Starting Ana	lysis for SBPS	S with the follow	ving parameters:				
Scenario Ty	pe: Scenario #	#2 - Full-scale	space-based missi	on			
Analysis Typ Variable par - CellTechno - Transmissi Fixed Paran	e: Low Fidelit ameters: logy onFrequency neters parame	y ters:					
- GroundPo	verStationLoc	ation					
		late Architectu	re with low fidelity	analysis Result	_		
	- opt	And Architectu	e maniow nuclity	analysis nestine			
#	G P S L	Do you want to i of the low fidelity Ground Power S Antenna Area (H Solar Panel Are Total Efficiency	update the architectur v analysis: Station Area (Km ²) = 2 (Km ²) = 0.4877 a (Km ²) = 6.2542 (%) = 11.75	re parameter with the 28.935	tollowing result		Total Efficier (%)
1	41	rotor Enterency	(,,,) 1110			1	15.05
2	41		OK	Cancel		J	12.26
3	40.2085	2.45	29	65.384	0.99446	5.9926	12.26
4	40.2085	5.8	36	30.4559	0.45105	5.0616	14.52
5	40.2085	5.8	29	28.935	0.4877	6.2542	11.75
6	40.2085	5.8	29	28.9351	0.4877	6.2542	11.75
6	40.2085	5.8	29	28.9351	0.4877	6.2542 Exp	11.75
					>)		

Solution – Low-Fidelity analysis results

- Scatter plot of results obtained with different input parameters combination
- Multiplicity of the 3 main areas combination solutions obtained during a simulation

📣 MathWorks

Space

Thales

a Thales / Leonardo company

- Sensitivity analysis on LCOE and EROEI wrt launcher fairing fill factor
- Power simulation of the SBSP architecture during a worst-case eclipse day

Outcomes

- Comprehensive Understanding, systematic analysis of the mission
- Simulation of Complex Scenarios, different solar conditions, orbit variations, etc.
- Data-Driven Insights using digital models
- Efficiency Improvements, optimize system components
- Risk Mitigation, identify challenges early
- Iterative Design, refine and improve the mission design over time
- Cost and Resource Savings, reduce the need for physical prototypes
- Communication and Collaboration, models facilitate effective communication

Concluding Remarks

Expandability:

This framework (Bridge and Analysis) is designed to be expandable to the next phases of this study and other missions/projects.

Cross-tool operability:

This framework demonstrates operability between Capella and System Composer and other MBSE tools .

Q&A

Serena Brizio

System Engineer & MBSE specialist serena.brizio@thalesaleniaspace.com

Marco Bimbi

EMEA MBSE Application Engineer marcob@mathworks.com

Lorenzo Guarino

Mission Analysis & Operations Engineer lorenzo.guarino-somministrato@thalesaleniaspace.com

Stephan van Beek

EMEA MBSE Application Engineer svanbeek@mathworks.com

