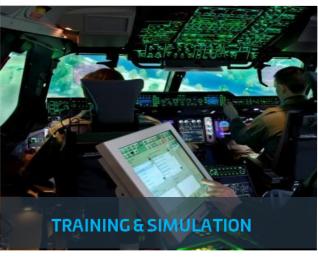


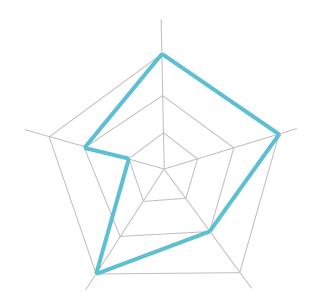
Strategy for climbing the very first steps

Strengthen the basics

Demystify both MBSE and Capella

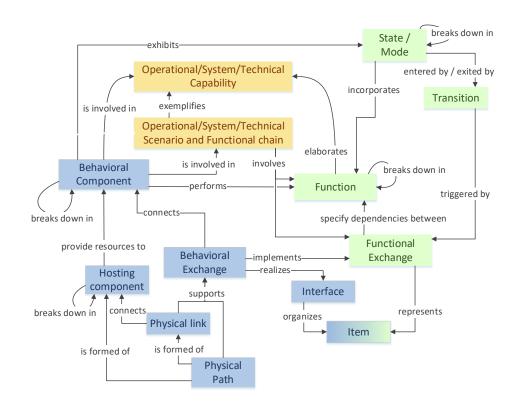

Promote quick wins

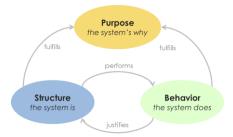
Adopt a pragmatic approach



Initial context

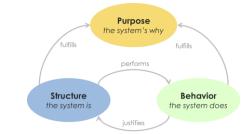
- Avionics domain is changing rapidly and significantly
- Need to build lean, adjusted solutions
- Strong development assurance culture
- Strong expertise in tooling development
- Sophisticated MBSE implementation failed to inspire

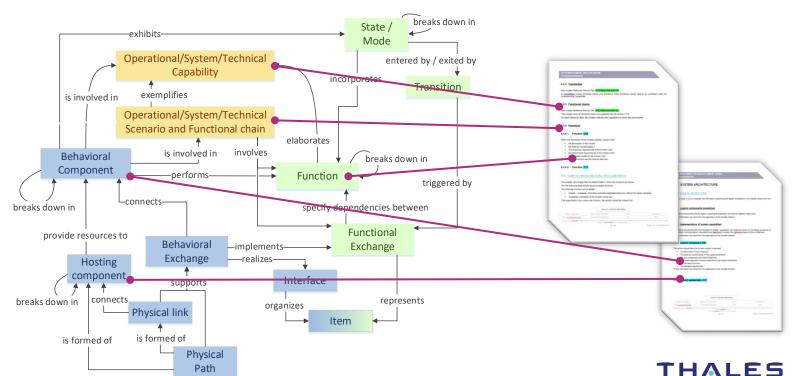

Strategy for climbing the very first steps

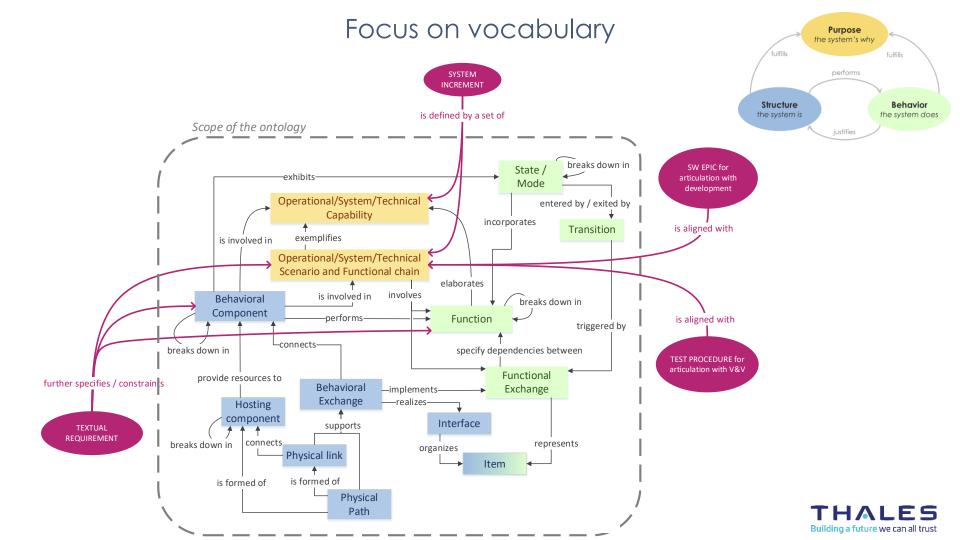

Strengthen the basics

Demystify both MBSE and Capella Promote quick wins

Adopt a pragmatic approach


Focus on vocabulary





Focus on vocabulary

Building a future we can all trust

Vocabulary material: glossary, examples

MBSE Handbooks for Avionics GBU

Webinars & Mini-trainings

Raising awareness

Strategy for climbing the very first steps

Strengthen the basics

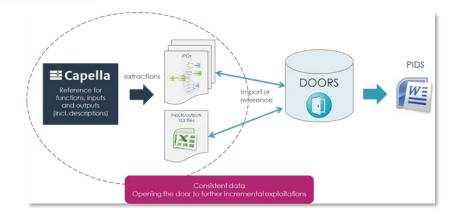
Demystify both MBSE and Capella

Promote quick wins

Adopt a pragmatic approach

Changing the narrative

- #1 Implement and respect the vocabulary for system purpose and architecture
- #2 Guarantee **consistency** across diagrams
- #3 Automatically produce diagrams
- #4 Automatically produce and maintain simplified views
- #5 Validate the model
- #6 Properly **characterize** elements
- #7 Write and execute queries, extract tables
- #8 Master variability
- #9 Generate Word documents and HTML websites
- #10 Work **collaboratively** with tracking of history

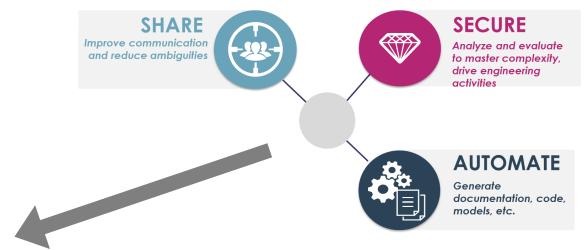


Current approach

- > Textual requirements in Doors
- > Inputs/outputs interface tables in Doors
- > VISIO diagrams referenced from DOORS with OLE links
- > Documentation production from DOORS
- > Reviews in Word? In Doors?

Changing the narrative

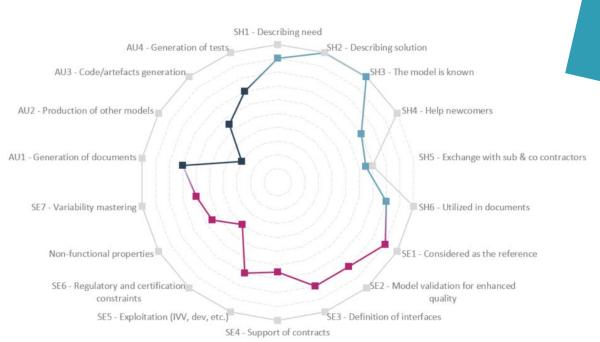
rakont Takont


- 1. Create a new function, describe it
- Create exchanges to/from existing functions, give label names
- Create or reuse item flows, describe them in a table for example)
- 4. Associate exchanges to items flows
- 5. Visualize generated diagrams
- 6. Run queries to produce interface tables

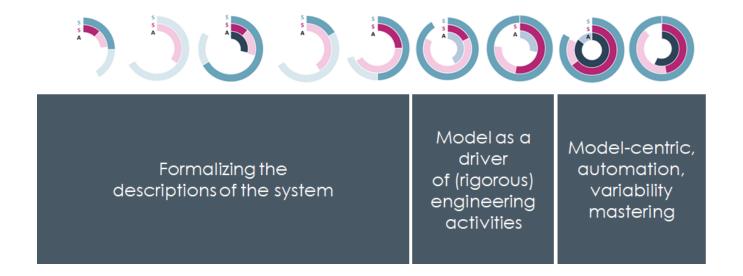

A 2-3 hours tool training of the different contributors would be sufficient for this very concrete objective

The collaborative Capella VM is already available for use

Framework for model-based engineering objectives



Relate MBSE deployment to more global engineering improvement actions

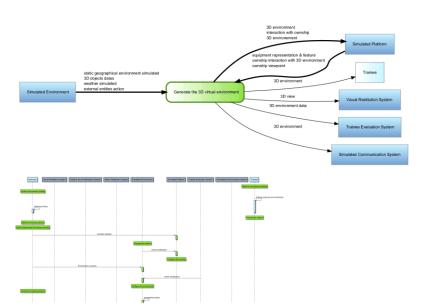

Framing the exploitation of models

Values have been changed, they do not represent the actual MBSE footprint of Thales Avionics

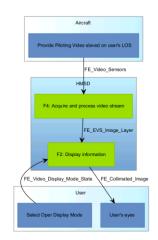
Exploitation of models: Typical patterns

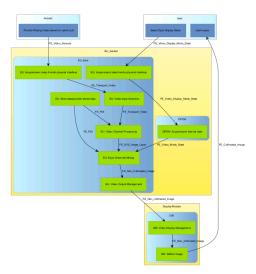
Strategy for climbing the very first steps

Strengthen the basics

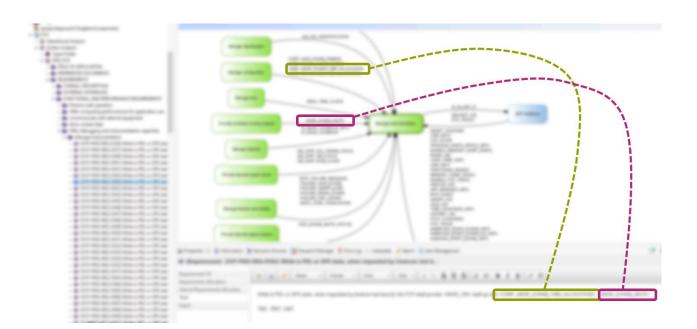

Demystify both MBSE and Capella

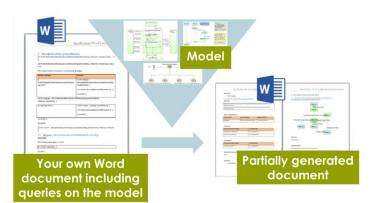
Promote quick wins


Adopt a pragmatic approach

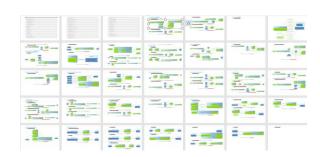

1. DDV – Dynamic Diagram Viewer

- Requirements
- 3. Documentation generation
- PVMT Annotating models
- Queries Extracting data
- 6. Articulation with software

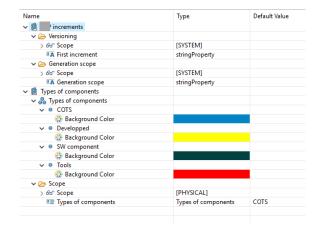




- 1. DDV Dynamic <u>Diagram Viewer</u>
- 2. Requirements
- 3. Documentation generation
- 4. PVMT Annotating models
- 5. Queries Extracting data
- 6. Articulation with

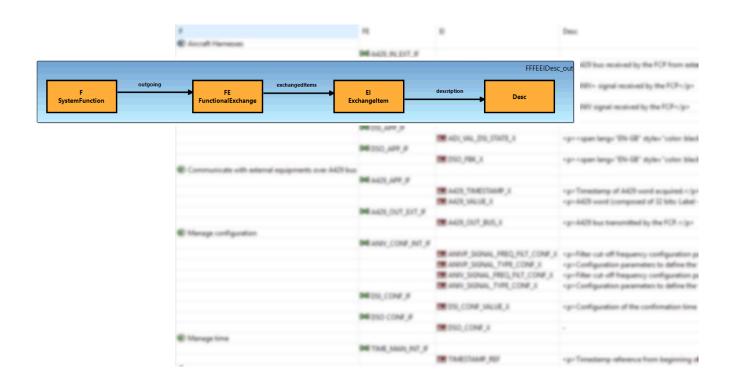

- 1. DDV Dynamic Diagram Viewer
- 2. Requirements
- 3. Documentation generation
- PVMT Annotating models
- 5. Queries Extracting data
- 6. Articulation with software

- 1. DDV Dynamic Diagram Viewer
- 2. Requirements
- 3. Documentation generation
- 4. PVMT Annotating models
- 5. Queries Extracting data
- 6. Articulation with software

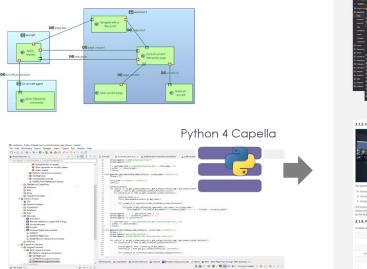

ame	Туре	Default Value
√		
BINARY		
✓ ● GROUP		
Background Color		
> • BUS		
> 👶 BUSES		
√ ♣ SCOPE		
v • TTS		
Background Color		
Border Color		
TTS (NEW STD2)		
Background Color		
Border Color		
v •		
Background Color		
Border Color		
> 0		
→ B KIND OF COMPONENT		
& Scope	[PHYSICAL]	
kind == kind	COMPONENT KIND	BINARY
→ BUS		
> & Scope	[PHYSICAL]	
™ bus	BUSES	NONE
→ SCOPE OF COMPONENT		
> & Scope	[PHYSICAL]	
! ≣ scope	SCOPE	TTS

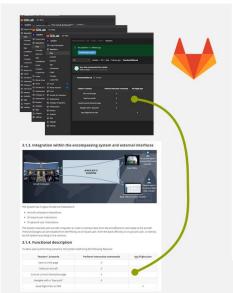
Name Ø	Type	Default Value
∨ (⇒ Cost		
> 66 Scope	[LOGICAL]	
■ OriginalEstimatedDevCost	integerProperty	0 K€
▼ OriginalEstimatedHours	integerProperty	0 h
→ Description		
66° Scope	[SYSTEM, LOGICAL]	
KA Objective	stringProperty	==TBD==
I A ShortName	stringProperty	==TBD==
A Name	stringProperty	==TBD==

(System Function) Cons	ult current interactive page
Name V 💆	Value
→ ② Description	
Objective	The objective of the feature is to permit to the remote
ShortName	CCIP
Name	ConsultCurrentInteractivePage


Integration of "versioning" in doc generation

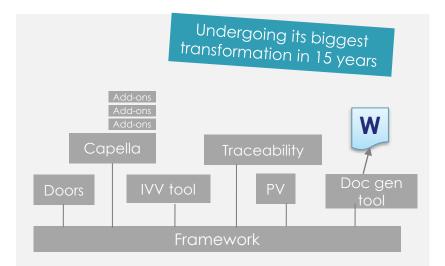
{ m:if SF.childrenSystemFunctions->size() = 0 and ____appliedPropertyValueGroups.eContents()->filter(capellacore::StringPropertyValue)->first(), value). >filter(capellacore::StringPropertyValue)->first(), value)}




- 1. DDV Dynamic Diagram Viewer
- 2. Requirements
- 3. Documentation generation
- PVMT Annotating models
- 5. Queries Extracting data
- 6. Articulation with software

- 1. DDV Dynamic Diagram Viewer
- 2. Requirements
- 3. Documentation generation
- PVMT Annotating models
- 5. Queries Extracting data
- 6. Articulation with software

Strategy for climbing the very first steps

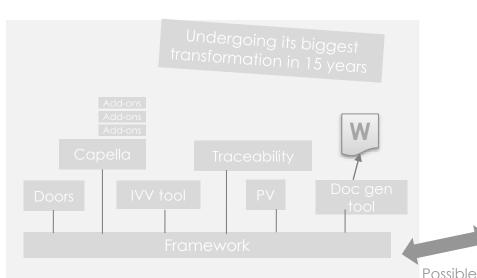

Strengthen the basics

Demystify both MBSE and Capella

Promote quick wins

Adopt a pragmatic approach

Official Thales workbench

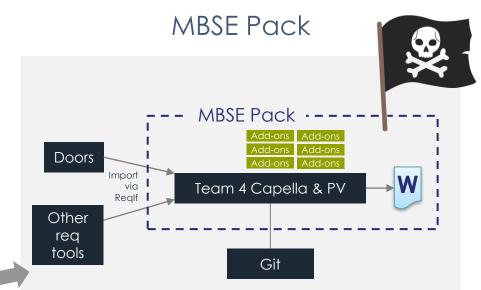


- Group official workbench offer
 Particularly interesting when connecting multiples kinds of artefacts (requirements, models, tests) and when product variability is applied to all artefacts
- Requires a lot of local support
 Version upgrades is complicated

3 options

- Wait for the new ultimate solution
- Keep on trying to force the deployment of the standard tooling
- Acknowledge the difficulty, and imagine a workaround

Official Thales workbench



Group official workbench offer

Particularly interesting when connecting multiples kinds of artefacts (requirements, models, tests) and when product variability is applied to all artefacts

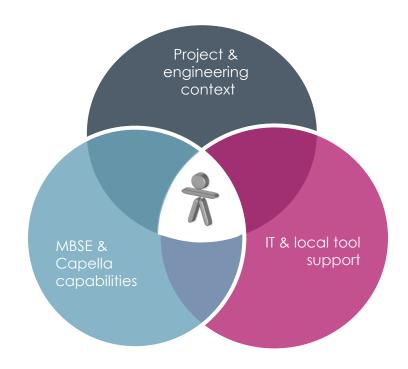
Requires a lot of local support

Version upgrades complicated

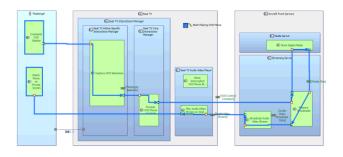
Same tools than Group workbench, but connected differently. Supported by AVS DSI & workbench teams

Very few tooling configuration, multi-user by default. Intended to be a minimalist MBSE environment

Easy to adopt recent versions of tools


Freedom for each user to install add-ons locally

 Only suitable for approaches where models play a central role. No built-in integration of IVV tool

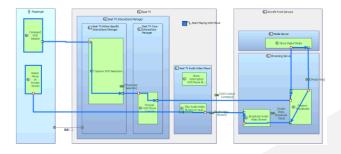


interfacina

Who can make the whole thing happen?

Manuel extraction and update

	[LAB][CTX] Start Playing VOD Movie FC	
External Functions	Watch Movie on Private Screen	
	Command VOD Session	
Internal Functions	Store Interrupted VOD Movie Status	
	Play Audio-Video Stream on Seat TV	
	Process VOD Movie Controls	
	Capture VOD Selections	
	Broadcast Audio Video Stream	
	Prepare Broadcasts	
	Store Digital Media	
Actors	Passenger	
System/System Components	Seat TV	
	Seat TV Audio Video Player	
	Seat TV Interactions Manager	
	Seat TV Core Interactions Manager	
	Seat TV Airline-Specific Interactions Manager	
	Aircraft Front Servers	
	Streaming Server	
	Media Server	
Interfaces	C3	


Example

Project practice: One manually maintained LAB per capability. No usage of functional chains. Manually produce tables reflecting the LAB content.

Recommended practice:

Create functional chains to illustrate capabilities, make the LAB unsynchronized and contextual to all functional chains. Write queries exploiting functional chains to produce tables.

Pragmatic updated practice: LAB still maintained manually, but Python script to extract Capability content.

Automated extraction and update

	[LAB][CTX] Start Playing VOD Movie FC
External Functions	Watch Movie on Private Screen
	Command VOD Session
Internal Functions	Store Interrupted VOD Movie Status
	Play Audio-Video Stream on Seat TV
	Process VOD Movie Controls
	Capture VOD Selections
	Broadcast Audio Video Stream
	Prepare Broadcasts
	Store Digital Media
Actors	Passenger
System/System Components	Seat TV
	Seat TV Audio Video Player
	Seat TV Interactions Manager
	Seat TV Core Interactions Manager
	Seat TV Airline-Specific Interactions Manager
	Aircraft Front Servers
	Streaming Server
	Media Server
Interfaces	C3

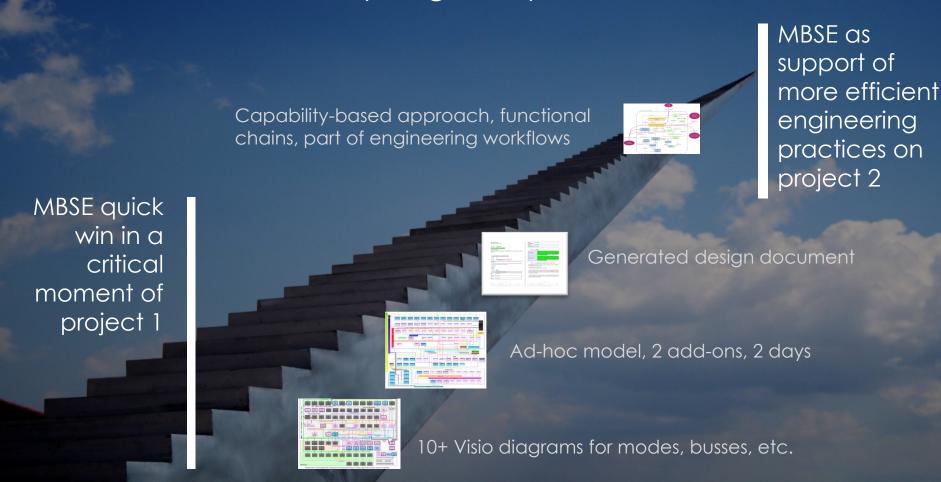
```
Python 4 Capella
140 worksheet1 = workbook.active
141 worksheetl.title = 'Diagram Content'
144 worksheetl.cell(row = i, column = 1).value = myDiagram.
145 worksheetl.merge_cells(start_row=1, start_column=1, end
148 index_first_external_functions = i + 1
149 for e f in external functions:
        worksheetl.cell(row = i, column = 1).value = 'Exte
        worksheetl.cell(row = i, column = 2).value = e f.ge
154 worksheetl.merge_cells(start_row=index_first_external_
156 index first internal functions = i+1
        worksheet1.cel1(row = i, column = 1).value = 'Internal Functions'
        worksheetl.cell(row = i, column = 2).value = i f.get name()
162 worksheetl.merge cells(start row=index first internal functions, start column=1, end row =i, end column=1)
165 for act in actors:
        worksheetl.cell(row = i, column = 1).value = 'Actors'
        worksheetl.cell(row = i, column = 2).value = act.get name()
170 worksheetl.merge cells(start row-index first actors, start column=1, end row -i, end column=1)
172 index_first_system_components = i + 1
173 for s c in system components:
       worksheetl.cell(row = i, column = 1).value = 'System/System Components
```

Example

Project practice: One manually maintained LAB per capability. No usage of functional chains. Manually produce tables reflecting the LAB content.

Recommended practice:

Create functional chains to illustrate capabilities, make the LAB unsynchronized and contextual to all functional chains. Write queries exploiting functional chains to produce tables.


Pragmatic updated practice:

LAB still maintained manually, but Python script to extract Capability content.

Strategy for climbing the very first steps

Strengthen the basics
Demystify both MBSE and Capella
Promote quick wins
Adopt a pragmatic approach

Every single step counts

Every single step counts

We are hoping to be up there soon

We were

there

We are here

Questions?

stephane.bonnet@thalesgroup.com