E Capella Days

INTERPLANETARY SPACE MISSION AS A REVERSE-ENGINEERING BACKGROUND FOR THE CAPELLA ENVIRONMENT

Arioli Andrea | Bellicoso Davide | Pecchini Luca Prosperi Alessio | Rambaldi Riccardo | Tomassi Emanuele

 $\mathbf{01}$ $\mathbf{05}$

MISSION DESCRIPTION

Mission Statement | High-level objectives | Mission Requirements

MBSE APPROACH

Operational analysis | Functional analysis | System Analysis

REVERSE ENGINEERING

Example of the reverse engineering process for the subsystems

FINAL DESIGN Description of the design choices and justification

CONCLUSION Acknowledgements | Contacts TABLE OF CONTENTS

2

01 MISSION DESCRIPTION

02 MBSE APPROACH

03 REVERSE ENGINEERING

04 FINAL DESIGN

ENVIRONMENT

INTRODUCTION

MISSION STATEMENT

"The Mars Express mission has the objective to monitor all aspects of the martian environment, including the subsurface, surface and atmosphere of the planet, and to take pictures of the Martian moons Phobos and Deimos, in order to search for evidence of extinct or extant life"

ENVIRONMENT

INTRODUCTION

HIGH-LEVEL SCIENTIFIC OBJECTIVES

- Global **mineralogical mapping** of Mars surface
- Study of the global **composition** and **circulation** of the martian **atmosphere**
- Perform surface morphology investigation
- Mapping of the distribution of water in the upper portions of the crust
- Perform flybys of Phobos and collect images of
 Martian moons
- Perform **in-situ investigation** of the local terrain and rocks
- Characterisation of the near-Mars plasma and neutral gas environment
- Study of the interaction of the upper atmosphere with the interplanetary medium and **solar wind**

MISSION REQUIREMENTS

ENVIRONMENT

PAYLOAD IDENTIFICATION AD RATIONALE - 1

PAYLOAD IDENTIFICATION AD RATIONALE - 2

PAYLOAD

MISSION DESCRIPTION

02 MBSE APPROACH

03 REVERSE ENGINEERING

04 FINAL DESIGN

TABLE OF CONTENTS

Operational analysis

Capture and consolidate operational needs from stakeholders. Identify entities, actors, roles, activities, concepts. <u>Useful diagrams</u>: OEBD, OCB, OES, OAB

Systems analysis

Identify the boundary of the system, consolidate requirements. Model functional dataflows. <u>Useful diagrams:</u> CSA, MCB, SFBD

RC etho

Logical architecture

Define how the system will work. Perform a first trade-off analysis. <u>Useful diagrams:</u> LCBD, LAB, M&S, ES

Physical architecture

How the system will be developed and built. Software vs hardware allocation. <u>Useful diagrams:</u> PCBD, PFB, PAB

OPERATIONAL ANALYSIS

Capture and consolidate operational needs from stakeholders. Define what the users of the system have to accomplish. Identify entities, actors, roles, activities, concepts.

SE ITU

OPERATIONAL ENTITY BREAKDOWN DIAGRAM

Create all operational actors (human stakeholders) or entities (non-human stakeholders), and specify if they are included within themselves

OPERATIONAL CAPABILITIES DIAGRAM

GOAL 1

Create all operational capabilities

GOAL 2

Specify their relationships with the existing operational entities or actor using Involvement

ENIVIDANIMENIT

Õ Ď MZ L . Z 0 ONA

ERATIONAL

 $\mathbf{\Omega}$

CapellaDays - INTERPLANETARY SPACE MISSION AS A REVERSE-ENGINEERING BACKGROUND FOR THE CAPELLA

U L Z

(*) •) 6 \mathbf{T} Ъ Architect

(*) •) 6 \mathbf{T} Ъ Architect

SYSTEM ANALYSIS

Identify the boundary of the system, consolidate requirements. Model functional dataflows.

SYSTEM ACTORS & MISSION CAPABILITIES BLANK

CSA - Operational Entities are now transformed into System Actors

MCB – 3 main missions identified, further described by the linked capabilities

[MCB] Capabilities

Ž C 0 ANK NAL

[SDFB] Provide Protection against electromagnetic interference

[SDFB] Provide On-Board Data Handling

FUNCTIONAL DATA FLOW BLANK [SDFB] - 2

[SDFB] Provide Communication

[SDFB] Provide protection against

[SDFB] Provide protection against collision

0 ANK Ц **(J)**

[SDFB] Provide protection against temperature

0 **O**

CapellaDays - INTERPLANETARY SPACE MISSION AS A REVERSE-ENGINEERING BACKGROUND FOR THE CAPELLA 29

MISSION DESCRIPTION

02 MBSE APPROACH

03 REVERSE ENGINEERING

04 FINAL DESIGN

MISSION ANALYSIS REVERSE ENGINEERING

FINAL PARAMETERS ACHIEVED

FROM FUNCTIONALITIES

MISSION JUSTIFIC TIFIC ANALYSIS

37

FROM FUNCTIONALITIES

MISSION JUSTIFIC ANALYSIS

SION ANALYSIS

SIN

FROM MISSION OBJECTIVES

POLAR ORBIT

HIGH ECCENTRICITY

HIGH SEMIMAJOR AXIS

LANDER

PLANET OBSERVATION

COMMUNICATION WITH GROUND STATION

STUDY SOLAR WIND AND ATMOSPHERE IN-SITU INVESTIGATION

MISSION ANALYSIS REQUIREMENTS

INPUT DATA		
Max Eclipse time	92	min
Orbit Period	7.5	h
Max daylight power budget	500	W
Eclipse power budget	300	W
P ₀ @ 1 AU of Si solar cell	202	W/m ²
Inherent degradation factor	0.77	-
Peak Power Tracking (PPT)	-	-
Degradation factor Si- cell	2	%/year
•		
DECULTO		
RESULIS		
Total Solar Array Area	11.89	m2

Design ef	ffects
-----------	--------

MA	The batteries shall be passivated before disposal phase, otherwise they might explode
CONFIG	Solar arrays need to be folded during launch and unfolded adterwards
STR	Solar panels are long appendages subjected to loads and vibrations
тсѕ	Electric power creates heat to be dissipated

Subystem EPS Ш ectric Design Power

ELECTRIC POWER SUBSYSTEM -REQUIREMENTS

Physical property	deg/s	Result	Real value	Margin	Constraint met
	180 deg /360 s	< 0.0914 Nm	0.075 Nm	Null because worst case perturbation are assumed)	\checkmark
	1.5357e-04 Nm	> 12.29 Nms	12 Nms	100%	Needs slightly less than 3 orbits in worst case scenario

ATTITUDE DETERMINATION AND CONTROL S/S - REQUIREMENTS

	Margins	Estimated Value	Real Value
Dry mass	0 %	555 kg	555 kg
Thruster	10%	From MA	•
Main engine	5%	From MA	•
Propellant mass	Inherited	433 kg	427 kg
Max volume tanks	10% (3% on masses)	213 L	267 L
Pressure Ox tank	Inherited	13.72 Bar	•
Pressure Fuel tank	Inherited	13.44 Bar	•
Low pressure Gas side	Inherited	13.72 Bar	20 Bar

	Design effects	es
тсѕ	Heat generated by the main engine shall be dissipated in order not to overheat nearby components	ign
STR	Propellant tanks need support structures which shall resist the loads during the maneuvers	
MA	Maneuvreing windows are constrained by the characteristics of the engines such as thrusting range and specific impulse	

CapellaDays - INTERPLANETARY SPACE MISSION AS A REVERSE-ENGINEERING BACKGROUND FOR THE CAPELLA

S

U

rop

Sio

stem

PROPULSION SUBSYSTEM-REQUIREMENTS

COMPONENT	RELEVANT FEATURES		#	MASS	POWER	
HGA	1,65 m diameter X-band and S-band Cassegrain system Centered paraboloid main reflector hyperboloid dichroic sub-reflector circular polarisation		1	~25 kg	20 W in X-band, 5 W in S-band	
LGA	Quasi-omni-directional S-band 4	40cm long		2	~1.2 kg each	10 W each
Amplifier	output power 48.4 dBm=69 Watts	s		2	7kg each	65 W each
Transponder	X-band transmitting at 8420 MHz S-band transmitting at 2296 MHz (output power 37dBm)		m)	2	5kg each	14 W
WIU				1	١١	W
RFDU				1	١١	11
3dB Hybrid Module				1	~75a	passive
WIU SW1_pe						Design effects
	W0 Selend TX1 W0 Selend TX1 Selend TX1 Selend TX1 Selend TX1 Selend TX1	OBDH			Manage and o	compress collected data
HGA SW3 SW1 RFI		ADCS			Fine attitu	ide required for HGA
LGA rear(x) SW4	X.Bland Tx2 S.Bland Tx2 X.Bland Tx2 S.Bland Tx2 S.Bland Tx2 Transponder 2	CONFIG	The so which	ola sh	r panels shall no all stay on the c	t be overshadowed by the antenna, old side far from the exhaust gases

TTMTC - To Subsystem C Design ecomm cation

47

TELECOMMUNICATION SUBSYSTEM- REQUIREMENTS

Componen t	Coating	Configuration	α	ε
Frontshield	Black kapton	Folded	0,52	0,8
Backshell	Vacuum deposited aluminum	Folded	0,09	0,04
Backplate	Chemglaze z306 black paint	Folded	0,92	0,89
Instrument	Teflon gold-	Unfolded	0,24	0,43

Design effects

EPS	EPS shall be able of providing at least 394 W for the orbiter, and 6 W for the lander
OBDH	OBDH shall be able of analyzing the s/s temperatures and give the necessary commands
AYLOAD	The health and correct functioning of each scientific instrument is heavily influenced by the temperature at which is kept
STR	The structure of the satellite shall be designed respecting the considerations done for the TCS
ADCS	Different coatings cause more or less SRP (solar radiation pressure) acting on the s/c. Changes in the inertia due to moving or stationary TCS components

Subsy S. stem **Chermal**)esign Control

49

THERMAL CONTROL SUBSYSTEM-REQUIREMENTS

MISSION DESCRIPTION

02 MBSE APPROACH

03 REVERSE ENGINEERING

04 FINAL DESIGN

DAVIDE BELLICOSO

davide.bellicoso@mail.polimi.it linkedin.com/in/davide-bellicoso/

RICCARDO RAMBALDI riccardo.rambaldi@mail.polimi.it linkedin.com/in/riccardorambaldi/

EMANUELE TOMASSI emanuele.tomassi@mail.polimi.it linkedin.com/in/emanuele-tomassi/

THANKS

Do you have any questions?

Pls feel free to contact us for the model of the project

***PROJECT REALIZED DURING THE ACADEMIC COURSE: «SPACE SYSTEMS ENGINEERING AND OPERATIONS», PROF.** M. LAVAGNA, POLITECNICO DI MILANO

ANDREA ARIOLI

andrea1.arioli@mail.polimi.it linkedin.com/in/andrea-arioli/

ALESSIO PROSPERI alessio.prosperi@mail.polimi.it linkedin.com/in/alessio-prosperi/

> LUCA PECCHINI luca.pecchini@mail.polimi.it