CapellaDays

Successful Capella Landing on a CNES Operational Use-Case

Jonathan Lasalle Artal Technologies MBSE Department Head <u>@LinkedIn</u>

12/10/2020

THALES

#CapellaDays

Successful Capella landing on a CNES operational use-case

Jonathan Lasalle - ARTAL Technologies

1 rue Ariane – 31520 Ramonville-Saint-Agne, France – 05 61 00 39 30 – artal@artal.fr

Capella The SVOM Project

"Arta

- Appears randomly in the sky
- Study of Gamma Ray Burst (GRB)
- Eruption of Gamma Photon
- Characteristics:
 - Appears randomly in the sky
 - Short time persistence
 - Short bursts: some seconds
 - Long bursts: some minutes
- Theories:
 - Short bursts : gravitational collapse of giant stars
 - Long bursts : merger of binary neutron star

Capella The SVOM Project

- Space segment
 - A satellite

" Arta

- Large angle detector
- Narrow angle sensors for data measurements
- Able to reorient autonomously
- Ground segment
 - Worldwide communication antenna network
 - Management centers
- France-China collaboration
- To be launched in 2021

Capella Historical development process

Artal

- (Digital) Textual document-based process
- Successive refinement of documents
- No structural consistency validation mechanism
- Validation based on human expertise

"Artal

Why using models instead of regular documents to describe the system ?

Communicate: use of a rigorous and reader-friendly language to reduce ambiguities

Secure : validation of the specification using traceability and coverage mechanism to ensure consistency, completeness ...

Generate: take advantage of the formal description to generate assets (and automate refinement steps)

Capella CNES process vs Arcadia/Capella « way of life »

Operational Analysis What the users of the system need to accomplish

Functional & Non Functional Need What the system has to accomplish for the users

Logical Architecture How the system will work to fulfill expectations

Physical Architecture How the system will be developed and built

Capella CNES process vs Arcadia/Capella « way of life »

Capella Interface engineering: documentation generation

{ m:let allSrcFct = src.eAllContents()->filter(la::LogicalComponent)->including(src)->collect(comp | comp.ownedFunctionalAllocation)->collect(fa | fa.targetElement)}{ m:let allTgtFct = tgt.eAllContents()->filter(la::LogicalComponent)->including(tgt)->collect(comp | comp.ownedFunctionalAllocation)->collect(fa | fa.targetElement)}{ m:let locEx = allFctEx->select(ex | (allSrcFct->includes(ex.source.eContainer()) and allTgtFct->includes(ex.target.eContainer()))) or (allTgtFct->includes(ex.source.eContainer()) and allSrcFct->includes(ex.target.eContainer())))}{ m:let diag1 = '[LAB] Interfaces '.concat(src.name).concat(' -).concat(src.name)}{ m:if (not(locEx->isEmpty()) and (diag1.isRepresentationName() or diag2.isRepresentationName())) }

Briefs Briefs Dermonous Dermonous

1.1 { m:src.name }/{ m:tgt.name }

Artal

1.2 FSC/CSC

1.2.1 List of exchanges

CAL-ECLAIRS	Eclairs calibration data	
CAL-MXT	MXT calibration data	
SP-ECLAIRS	Eclairs Scientific Products	
SP-MXT	MXT Scientific Products	

Original

Capella Interface engineering assessment

- (SVOM) Interface engineering
 - Crucial step in complex system development
 - The international context call for even more rigor
 - Late-update can be costly
- Capella is « ready » for interface engineering management
 - Vast expressivity

- Traceability / continuity between specification layers
- MBSE objectives reached:
 - Formal specification available
 - Coverage of the needs / Completeness evaluation
 - Specification documents generation
- \Rightarrow Next step: operational capture of V&V data

Capella Validation and Verification level 1: needs coverage 🖊 🖊 🖊 System SVOM user (scientific community) SVOM Joint science working group Analvsis Plan prompt GRB detection С Laver The constraint applicable to the Non GRB science is Follow-up GRB that the observation shall not influence the {C} strategy of the main GRB goals. Measure the temporal Quickly provide red shift C {C} properties of the prompt [C] indicators of detected GRBs emission Detect transient event Perform ToO observation (ToO) Perform Observations on planned target (General Prog) M Provide GRB information (Core Prog.) M M Permit the detection of all known M {C} types of GRBs, with a special care on high-z GRBs (and subluminous GRBs) C Detect and localize GRB Perform early aftergrow GRB observation Plan observations Perform non GRB Observation Disseminate GRB information {C} Provide fast, reliable С C С C С **GRB** positions C С Detect events on ground Perform prompt GRB observation Provide the ToO information to board С Detect events on board Quickly provide (sub-) {C} arcsecond positions of С detected afterglows Point at the target «i» «i» C «i» Measure non GRB parameters С Deploy & maintain spacecraft in operation «i Quickly identify the afterglows of Measure the broadband spectral {C} detected GRBs, including those which {C} shape of the prompt emission (from visible to MeV) are highly red shifted (z > 6)

Capella Validation and Verification level 2: functional chains

Capella Validation and Verification level 2: functional chains

Capella Validation and Verification level 2: scenarios

Layer

Capella Validation and Verification level 3: a brand new Capella extension

Capella Validation and Verification level 3: a brand new Capella extension

Capella Validation and Verification level 3: a brand new Capella extension

Capella Validation and Verification level 3: propagation

Artal

Capella Validation and Verification level 3: propagation

Capella Validation and Verification assessment

- (SVOM) Validation and Verification process
 - Another crucial step in complex system development
 - Guarantee the coverage of the requirements and the system consistency
 - Potentially iterative
- Capella needs some extension
 - Validation campaign management (objectives, test sequences...)
 - But natively supports iterative processes
- MBSE objectives reached:
 - Model strongly used as working base to identify tests
 - Evaluation of the coverage of the specification by the test
 - Specification documents generation (and simulation data generation?)

 \Rightarrow And what about the requirements themselves ?

Capella Requirements analysis

Challenges:

' Arta

- Organize requirements (allowing several reading paths)
 - Traceability between requirements and system specification (coverage)
 Occument generation including requirements and model items
- Analysis of the 579 textual requirements :
 - OK: can potentially be fully covered (replaced) by model elements
 - Partial: can be partially covered by the model
 - KO: cannot be covered by the model
- ⇒ Partial due to the heterogeneous level of the requirements
 - Several requirements concerns the engineering process (and not the system itself)
 - e.g. The verification phase shall not exceed 5 months.
 - ⇒ Still need an autonomous requirement process... but need to be structured !

Capella Requirements analysis

Arta

- Concerning the system specification requirements:
 - Incoming: upstream requirement: directly impacts the model e.g. Mission Center shall merge both French and Chinese payload telecommand plan and send to CCC
 - Outgoing: downstream requirement: complete the model e.g. The AAV bulletin shall be provided to the MXT each second

- ⇒ Mostly "incoming": will allow to derive the specification from requirements
- ⇒ Mostly "behaviors": will require other inputs to define the system structure (even if the behaviors to support will guide the system architecture)

Incoming Outgoing

Capella Satellite database

" Arta

SVOM Satellite database

- defined using a specific tool: CADS
- define the resources of the satellite (components, data structures...)
- part of the software implementation phase
- ⇒ Challenge: to generate (or initialize) it from the model

Proof of concept:

Capella The CNES feedback

Real guide / useful help:

- Right questions at the right time
- Structuration of work
- Impose rigor

Non-ambiguous specification

Sharing communication platform

Full process coverage:

from preliminary definition to project validation

Return on investment confirmed

Specification building:

- Heterogeneous requirements
- Still requires "classical engineering work"

Hard to identify the right modeling level

Not fully convinced by doc generation:

- Hard template customization
- Numerous iteration

Future according to the CNES:

- The team is resolute to apply MBSE on next projects
- The whole team will have to be trained before the beginning of the project
- Will require the integration of a Capella expert in the team (System engineers will not be autonomous in Capella use)

More information on <u>http://capella.artal-group.com</u>

#CapellaDays

Thanks for watching

For any other questions, join our discussion group on LinkedIn.

<u>Over 30 Industry leaders</u> trust Capella, so you can too.

We regularly organise Capella related events, so see you then !

