
Renfei Xu & Wenhua Fang

Model Execution And System
Simulation In Capella

Background and Motivation
01

Execution and Simulation Rules
02

Example
03

C
o

n
te

n
ts

Background and Motivation 01

Background

4

 Glaway has been deploying

Capella-based MBSE solution in a

Radar institute since late 2016

 The Radar products of this

institute vary from seeker,

spaceborne, airborne, shipborne

to ground-based

 By now, each area in this institute

has at least one product using

Capella in its architecture design,

including the most complex

product

Motivation

5

Challenge: how to verify

the architecture design

is correct ?

 Is the mode and state

machine consistent with

scenarios ?

 Is the function

decomposition

appropriate ? Can the

coordination of various

functions achieve the

desired results ?

 …

Consistency ?

Correctness ?

Solution

6

 Develop an add-on to make mode and state machines executable. Use a control panel to interact with the state machine,

and automatically record execution process as a scenario. Judge if the sequence of functions and interfaces is desirable

by compare manual scenario and auto-record scenario.

 During state machine execution, M code (and C code) embedded in functions can be directly invoked to simulate the

operation effect of the architecture.

(Model Execution)

(Select Target)

(Select Trigger)

(Set Value)

(History)

(Send)

(Cancel)

Execution and Simulation Rules 02

Execution Rules of State Machine (1/3)

8

Based on Mealey machine,

as follows:

 The trigger of transition

can only be functional

exchange or time event

 The guard of transition

can directly reference

property values from

relative component

 Different state machine

can use “Gen”

mechanism to trigger

each other

(Mode)

(Mode)

(Edit Properties of Mode)

(Name)

(Summary)

(Mode Implementation)

(Entry)

(Activity)

(Exit)

(Operational Activity / Function)

(Transition)

(Transition)

(Edit Properties of Transition)

(Name)

(Summary)

(Guard)

(Effect)

(Transition Implementation)

(Trigger)

(Trigger Description)

(OK) (Cancel) (OK) (Cancel)

Execution Rules of State Machine (2/3)

9

When transition occurs, the sequence of function and Gen

is as follows:

1. Execute do function of pre-state

2. Generate doGen Trigger of pre-state

3. Execute exit function of pre-state

4. Generate exitGen Trigger of pre-state

5. Guard of transition can reference property value

6. Execute effect function of transition

7. Generate effectGen Trigger of transition

8. Execute entry function of post-state

9. Generate entryGen Trigger of post-state

Execution Rules of State Machine (3/3)

10

Diplay rules during execution are as follows:

 Current state/mode is highlighted by red

 Transition to current state is highlighted

by yellow

 States/modes and transitions that have

been through are highlighted by green

 States/modes and transitions that have

not been through display as default

The process of execution will be record as scenarios automatically

(Initial)

Control Panel

11

Users can use control panel to

interact with mode/state machines

during execution:

 Select the target to send triggers

 Select the trigger to be sent, and

send it

 Define the value of the trigger to

be sent (the value will be used

when relative function has

embedded M code)

 History of triggers that have been

sent during execution

(Model Execution)

(Select Target)

(Select Trigger)

(Set Value)

(History)

(Send)

(Cancel)

Execution Rules of Function Data Flow

12

Our execution add-on can support execution of function

data flow other than mode/state machine. The rule is based

on Petri-net, as follows:

 Add initial node, the function connected to initial node

will be executed at first

 The beginning condition of a function’s execution is that

all input ports has at least one token

 The execution of function will consume one token on

each input port

 After execution, a function will produce one token on

each output port

 A token will move from the output port to the input port

immediately after it is produced

 The process of execution will be record as scenarios

automatically

Execution Execution

Execution

Execution Rules of the Whole Model

13

Component with MSM

If some components have MSM while others don’t, our execution add-on can make a hybrid-execution of state

machine rule and function data flow rule:

 Components with MSM will execute under state machine rule, and others under function data flow rule

 At the border between state machine rule and function data flow rule, triggers in state machine are equal with

tokens in function data flow

Matlab Code Embedded in Function

14

Users can invoke Matlab editor to edit embedded M code by

function’s right-click menu:

 The first line of Matlab function is auto-generated, re-using

function name and functional input/output

 Property value of relative component can be referenced by

“localData”

 Breakpoints can be added in Matlab Editor to debug while

execution

(Edit Code within Matlab)

Display Options for Execution

15

 The number of functions and interfaces

invoked in execution for a real (RADAR)

system simulation is very large (from

thousands to millions). Sometimes it’s

impossible to highlight MSM and update

scenarios in real time. So we need display

options to improve execution efficiency in

some cases.

 If the real-time update option is closed, the

execution process will be record as xml file,

which can be partially inserted into

scenario after execution.

(Preferences)

(Configuration)

(Dynamic Execution of Model)

(Dynamic Execution of Model)

(Configuration of Dynamic Execution of Model)

(Select Embedded Language)

(Insert at Real Time)

(Update at Real Time)

(Highlight at Real Time)

(Insert after Execution)

(Record Execution Process)

(Back to Default) (Apply)

(Cancel)

Example 03

Introduction to MPAR Example

17

 MPAR (Multi-Functional Phased Array

Radar) performs both scanning

(searching) and tracking tasks. Most

of its simulation code comes from

MPARSearchTrackExample in Matlab

2019a.

 This example intends to show how to

use execution add-on to do system

simulation. It’s not about how to

design a real phased array Radar. So

it only uses baseband signal, and

simplified signal processing.

-- This picture comes from Matlab 2019a

Logical Architecture of MPAR

18

 MPAR consists of five subsystems:

Radar managing subsystem, antenna

subsystem, signal processing

subsystem, data processing

subsystem and display subsystem.

MPAR will search, confirm and track

targets under the control of simulation

configurator.

 Radar managing subsystem, antenna

subsystem and simulation

configurator has MSM, while others

don’t.

MPAR MSM: Simulation Configurator

19

 After receiving StartOrder from

simulation controller, simulation

configurator will initialize MPAR

simulation environment, and send

initialization signal to different

subsystems.

 When simulation is on, the

configurator will update simulation

time at the end of each dwell.

MPAR MSM: Radar Managing Subsystem

20

 After receiving initialization

signal, Radar managing

subsystem will initialize job

queue, and enter working mode.

 In working mode, Radar

managing subsystem will get

current job at the beginning of

each dwell, and provide job

information and beam direction

to other subsystems.

MPAR MSM: Antenna Subsystem

21

 After receiving initialization

signal, antenna subsystem will

initialize the phased array, and

enter Stand_By mode.

 In each dwell, antenna

subsystem will working

through Transmitting mode and

Receiving mode for every pulse,

until all pulses are finished.

Embedded Simulation Code for MPAR Functions (Partial)

22

getCurrentJob generateDetection updateTrackAndJob

Execution Effect of MPAR Example

23

No. Add-on Name Introduction

1
DGS（Document

Generation Server）

Transform Capella model into documents. Users can edit templates

in Word in a “what you see is what you get” manner, without using

Aql.

2
TPM（Technical

Performance Manager）

Model and manage all MOE, MOP and TPM in Capella model.

Users can make quantitative analysis among different

measurements, and graphically analyze change impact of a given

measurement.

3
ICM（Interface Control

Manager）

Detailed design of interfaces based on functional exchange,

component exchange, and physical link. Include message design,

data word design and pin design based on different bus types, e.g.

1553B, RS422, RS485, CAN, AFDX and so on.

Other Add-on Provided by Glaway

Thanks !

客户至上 价值创新 以人为本 团队协作

